Inexact-Restoration Method with Lagrangian Tangent Decrease and New Merit Function for Nonlinear Programming
نویسنده
چکیده
A new Inexact-Restoration method for Nonlinear Programming is introduced. The iteration of the main algorithm has two phases. In Phase 1, feasibility is explicitly improved and in Phase 2 optimality is improved on a tangent approximation of the constraints. Trust regions are used for reducing the step when the trial point is not good enough. The trust region is not centered in the current point, as in many Nonlinear Programming algorithms, but in the intermediate “more feasible” point. Therefore, in this semifeasible approach, the more feasible intermediate point is considered to be essentially better than the current point. This is the first method in which intermediate-point-centered trust regions are combined with the decrease of the Lagrangian in the tangent approximation to the constraints. The merit function used in this paper is also new: it consists of a convex combination of the Lagrangian and the (non-squared) norm of the constraints. The Euclidean norm is used for simplicity but other norms for measuring infeasibility are admissible. Global convergence theorems are proved, a theoretically justified algorithm for the first phase is introduced and some numerical insight is given.
منابع مشابه
A Flexible Inexact Restoration Method and Application to Optimization with Multiobjective Constraints under Weighted-Sum Scalarization
We introduce a new flexible Inexact-Restoration (IR) algorithm and an application to problems with multiobjective constraints (MOCP) under the weighted-sum scalarization approach. In IR methods each iteration has two phases. In the first phase one aims to improve the feasibility and, in the second phase, one minimizes a suitable objective function. This is done in such a way to ensure bounded d...
متن کاملA Flexible Inexact Restoration Method and Application to Multiobjective Constrained Optimization
We introduce a new flexible Inexact-Restoration (IR) algorithm and an application to Multiobjective Constrained Optimization Problems (MCOP) under the weighted-sum scalarization approach. In IR methods each iteration has two phases. In the first phase one aims to improve feasibility and, in the second phase, one minimizes a suitable objective function. In the second phase we also impose bounded...
متن کاملAssessing the reliability of general-purpose Inexact Restoration methods
Inexact Restoration methods have been proved to be effective to solve constrained optimization problems in which some structure of the feasible set induces a natural way of recovering feasibility from arbitrary infeasible points. Sometimes natural ways of dealing with minimization over tangent approximations of the feasible set are also employed. A recent paper [N. Banihashemi and C. Y. Kaya, I...
متن کاملIndefinitely preconditioned inexact Newton method for large sparse equality constrained non-linear programming problems
An inexact Newton algorithm for large sparse equality constrained non-linear programming problems is proposed. This algorithm is based on an indefinitely preconditioned smoothed conjugate gradient method applied to the linear KKT system and uses a simple augmented Lagrangian merit function for Armijo type stepsize selection. Most attention is devoted to the termination of the CG method, guarant...
متن کاملNONLINEAR FRAME ANALYSIS BY MINIMIZATION TECHNIQUE
By minimizing the total potential energy function and deploying the virtual work principle, a higher-order stiffness matrix is achieved. This new tangent stiffness matrix is used to solve the frame with geometric nonlinear behavior. Since authors’ formulation takes into account the higher-order terms of the strain vector, the convergence speed of the solution process will increase. In fac...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007